A fast Kalman filter for images degraded by both blur and noise
نویسنده
چکیده
In this paper a fast Kalman filter is derived for the nearly optimal recursive restoration of images degraded in a deterministic way by blur and in a stochastic way by additive white noise. Straightforwardly implemented optimal restoration schemes for two-dimensional images degraded by both blur and noise create dimensionality problems which, in turn, lead to large storage and computational requirements. When the band-Toeplitz structure of the model matrices and of the distortion matrices in the matrix-vector formulations of the original image and of the noisy blurred observation are approximated by circulant matrices, these matrices can be diagonalized by means of the FFT. Consequently, a parallel set of N dynamical models suitable for the derivation of N lowarder vector Kalman filters in the transform domain is obtained. In this way, the number of computations is reduced from the order of U(N 4 , to that of U(N log2 N) for N X N images.
منابع مشابه
A New Adaptive Extended Kalman Filter for a Class of Nonlinear Systems
This paper proposes a new adaptive extended Kalman filter (AEKF) for a class of nonlinear systems perturbed by noise which is not necessarily additive. The proposed filter is adaptive against the uncertainty in the process and measurement noise covariances. This is accomplished by deriving two recursive updating rules for the noise covariances, these rules are easy to implement and reduce the n...
متن کاملImproved Adaptive Median Filter Algorithm for Removing Impulse Noise from Grayscale Images
Digital image is often degraded by many kinds of noise during the process of acquisition and transmission. To make subsequent processing more convenient, it is necessary to decrease the effect of noise. There are many kinds of noises in image, which mainly include salt and pepper noise and Gaussian noise. This paper focuses on median filters to remove the salt and pepper noise. After summarizin...
متن کاملFixed-point FPGA Implementation of a Kalman Filter for Range and Velocity Estimation of Moving Targets
Tracking filters are extensively used within object tracking systems in order to provide consecutive smooth estimations of position and velocity of the object with minimum error. Namely, Kalman filter and its numerous variants are widely known as simple yet effective linear tracking filters in many diverse applications. In this paper, an effective method is proposed for designing and implementa...
متن کاملFast and Efficient Method for Image Denoising
This paper presents a fast and efficient RaoBlackwellized Particle Filter (RBPF) for real noisy image restoration. The proposed method first estimates the noise level from the noisy image. Then RBPF with Maximum Likelihood Estimation method is used for noise removal. The Maximum likelihood Estimation method is used for noise distribution process. Rao-Blackwellized particle filtering is a combin...
متن کاملAn Enhanced Median Filter for Removing Noise from MR Images
In this paper, a novel decision based median (DBM) filter for enhancing MR images has been proposed. The method is based on eliminating impulse noise from MR images. A median-based method to remove impulse noise from digital MR images has been developed. Each pixel is leveled from black to white like gray-level. The method is adjusted in order to decide whether the median operation can be appli...
متن کامل